Comune di GOLFERENZO

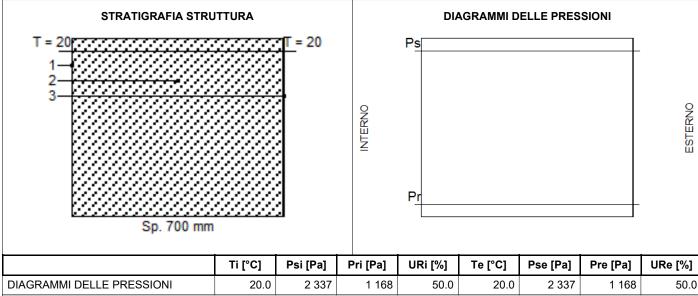
Provincia di PAVIA

FASCICOLO SCHEDE STRUTTURE

OGGETTO:	Recupero Immobile Belloni nel comune di Golfer	ecupero Immobile Belloni nel comune di Golferenzo (PV) in piazza della chiesa SNC								
TITOLO EDILIZIO:	del / /									
COMMITTENTE:	Comune di Golferenzo (PV) /sig. Belloni Angelon	omune di Golferenzo (PV) /sig. Belloni Angelomaria								
		Il Tecnico								

Scheda: MR1

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

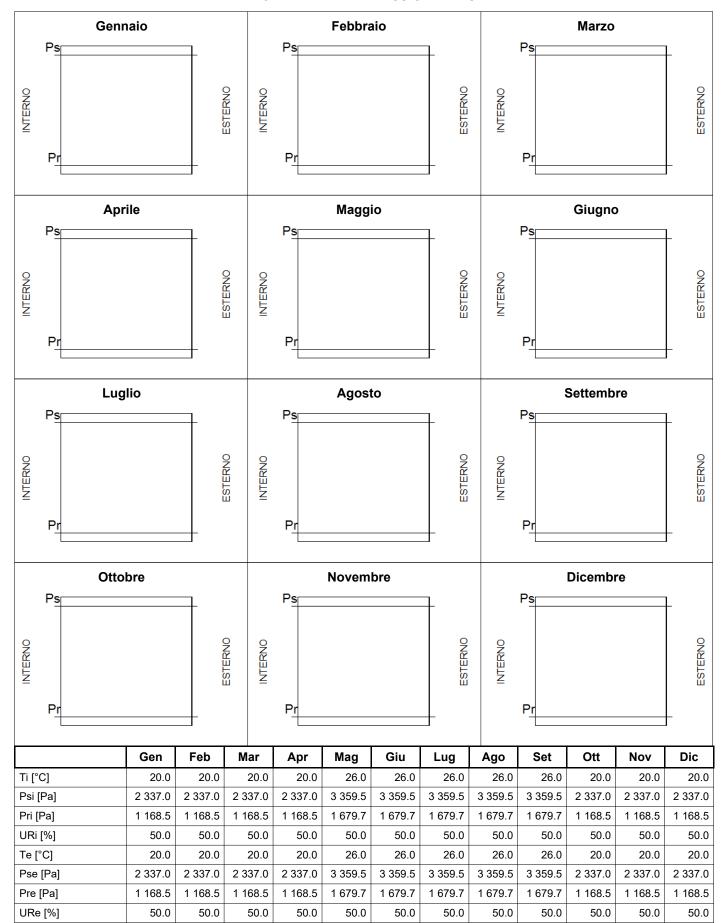

Codice Struttura: Mr.03

Descrizione Struttura: Muratura perimetrale 3 in roccia tip.3

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Muratura in pietra	700	2.400	3.429	1 750.00	0.019	1000	0.292
3	Adduttanza Esterna	0		7.700			0	0.130

RESISTENZA = 0.551 m ² K/W		TRASMITTANZA = 1.814 W/m²K
SPESSORE = 700 mm	CAPACITA' TERMICA AREICA (int) = 82.145 kJ/m²K	MASSA SUPERFICIALE = 1 750 kg/m²
TRASMITTANZA TERMICA PERIODICA = 0.05 W/m²K	FATTORE DI ATTENUAZIONE = 0.03	SFASAMENTO = 17.90 h
FRSI - FATTORE DI TEMPERATURA = 0.0000		

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..


Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

	VERIFICA IGROMETRICA													
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic		
URcf1	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00		
Tcf1	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00		
URcf2	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00		
Tcf2	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00		
Verifica Interstiziale VERIFICATA			ATA	La struttura non è soggetta a fenomeni di condensa interstiziale.										
Verifica formazione muffe VERIFICATA				Valore massimo ammissibile di U = Sempre verificato.										

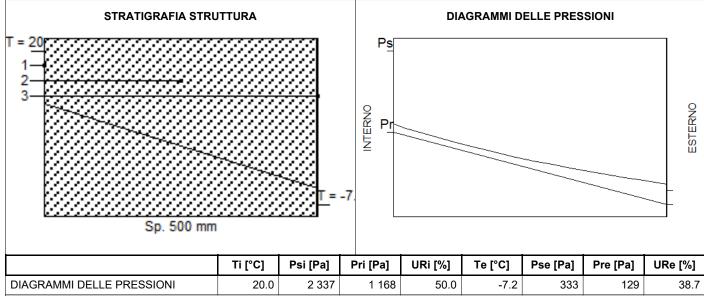
La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Altre unità

cf2 = Zone riscaldate

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI


Codice Struttura: Mr.01

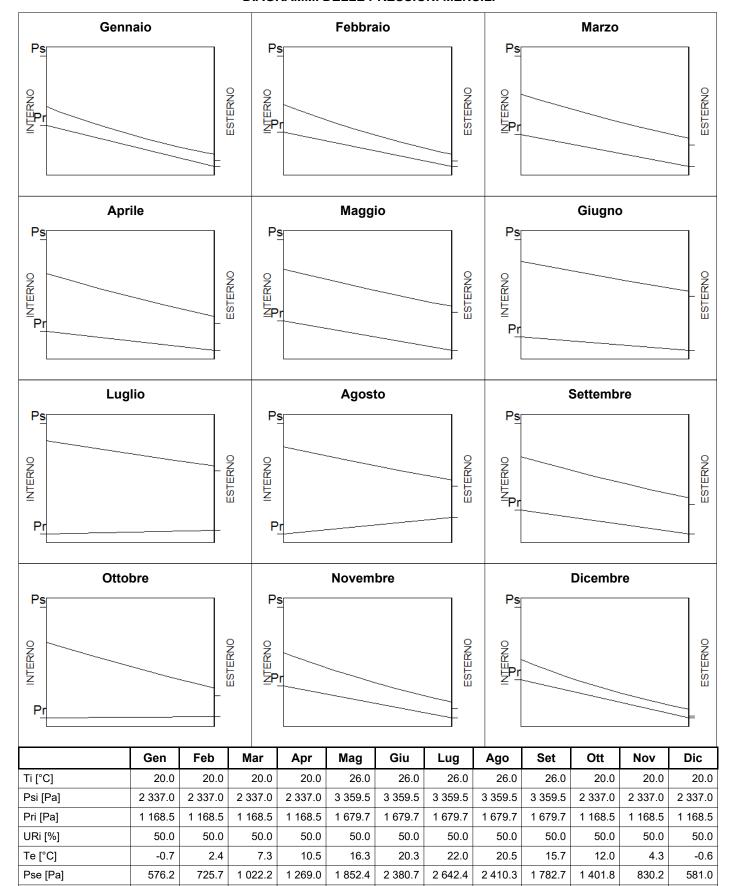
Descrizione Struttura: Muratura perimetrale 1 in roccia tip.1

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Muratura in pietra	500	2.400	4.800	1 250.00	0.019	1000	0.208
3	Adduttanza Esterna	0		25.000			0	0.040

RESISTENZA = 0.378 m ² K/W		TRASMITTANZA = 2.644 W/m²K
SPESSORE = 500 mm	CAPACITA' TERMICA AREICA (int) = 86.530 kJ/m ² K	MASSA SUPERFICIALE = 1 250 kg/m²
TRASMITTANZA TERMICA PERIODICA = 0.32 W/m²K	FATTORE DI ATTENUAZIONE = 0.12	SFASAMENTO = 12.33 h
FRSI - FATTORE DI TEMPERATURA = 0.6437		

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.


	VERIFICA IGROMETRICA												
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	
URcf1	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	
Tcf1	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00	
URcf2	82.90	88.50	68.50	72.80	57.30	60.90	65.80	80.10	67.80	84.20	83.90	94.20	
Tcf2	-0.70	2.40	7.30	10.50	16.30	20.30	22.00	20.50	15.70	12.00	4.30	-0.60	

Verifica Interstiziale	VERIFICATA	La struttura non è soggetta a fenomeni di condensa interstiziale.
Verifica formazione muffe	NON VERIFICATA	Fattore di temperatura minima fRsi = 0.6437 (mese critico: Gennaio). Valore massimo ammissibile di U = 1.4252 W/m²K.

La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Zone riscaldate

cf2 = Esterno

57.3 Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

1 061.4

1 449.8

60.9

1 738.7

65.8

1 930.6

80.1

1 208.7

67.8

Pre [Pa]

URe [%]

477.7

82.9

642.3

88.5

700.2

68.5

923.9

72.8

1 180.3

84.2

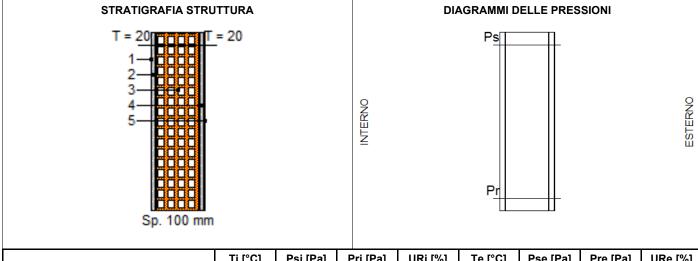
696.5

83.9

547.3 94.2

Scheda: MR3

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI


Codice Struttura: Mr.0

Descrizione Struttura: Tramezze interne in mattone forato con intonaco su entrambe le facce

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Intonaco interno.	10	0.700	70.000	14.00	18.000	1000	0.014
3	Mattone forato da 80	80		5.000	64.00	20.570	1000	0.200
4	Intonaco interno.	10	0.700	70.000	14.00	18.000	1000	0.014
5	Adduttanza Esterna	0		7.700			0	0.130

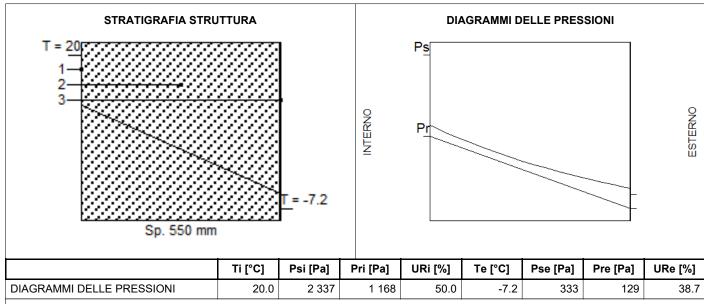
RESISTENZA = 0.488 m ² K/W		TRASMITTANZA = 2.048 W/m ² K
SPESSORE = 100 mm	CAPACITA' TERMICA AREICA (int) = 40.671 kJ/m²K	MASSA SUPERFICIALE = 64 kg/m²
TRASMITTANZA TERMICA PERIODICA = 1.80 W/m²K	FATTORE DI ATTENUAZIONE = 0.88	SFASAMENTO = 2.65 h

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]	Te [°C]	Pse [Pa]	Pre [Pa]	URe [%]
DIAGRAMMI DELLE PRESSIONI	20.0	2 337	1 168	50.0	20.0	2 337	1 168	50.0

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

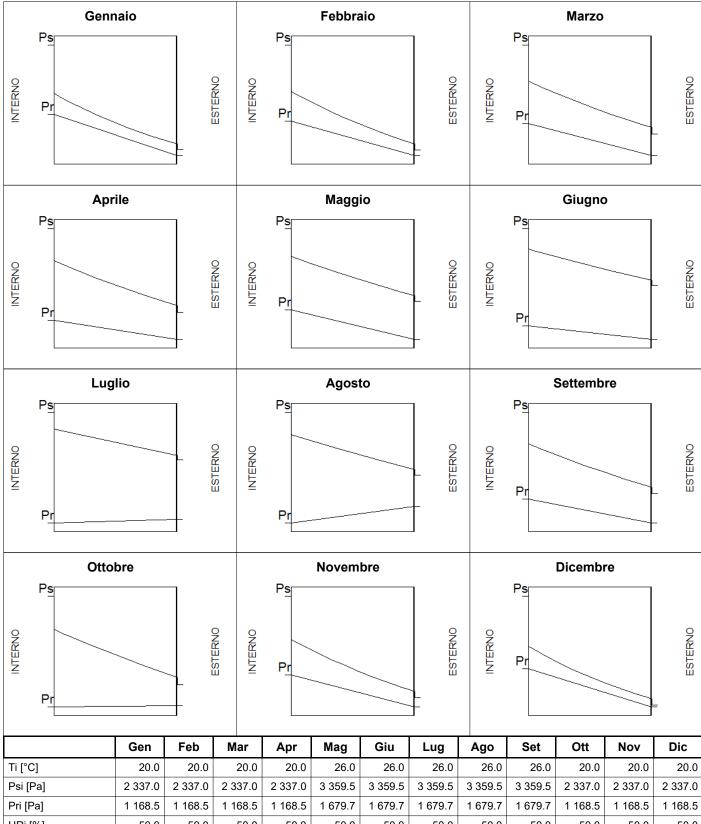

Codice Struttura: Mr.02

Descrizione Struttura: Muratura perimetrale 1 in roccia tip.3

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Muratura in pietra	550	2.400	4.364	1 375.00	0.019	1000	0.229
3	Adduttanza Esterna	0		25.000			0	0.040

RESISTENZA = 0.399 m ² K/W		TRASMITTANZA = 2.506 W/m ² K
SPESSORE = 550 mm	CAPACITA' TERMICA AREICA (int) = 84.967 kJ/m²K	MASSA SUPERFICIALE = 1 375 kg/m ²
TRASMITTANZA TERMICA PERIODICA = 0.24 W/m²K	FATTORE DI ATTENUAZIONE = 0.10	SFASAMENTO = 13.51 h
FRSI - FATTORE DI TEMPERATURA = 0.6437		

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..


Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

	VERIFICA IGROMETRICA														
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic			
URcf1	82.90	88.50	68.50	72.80	57.30	60.90	65.80	80.10	67.80	84.20	83.90	94.20			
Tcf1	-0.70	2.40	7.30	10.50	16.30	20.30	22.00	20.50	15.70	12.00	4.30	-0.60			
URcf2	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00			
Tcf2	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00			
Verifica I	erifica Interstiziale VERIFICATA					La struttura non è soggetta a fenomeni di condensa interstiziale.									
Verifica f	erifica formazione muffe NON VERIFICATA					Fattore di temperatura minima fRsi = 0.6437 (mese critico: Gennaio). Valore massimo ammissibile di U = 1.4252 W/m²K.									

La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Esterno

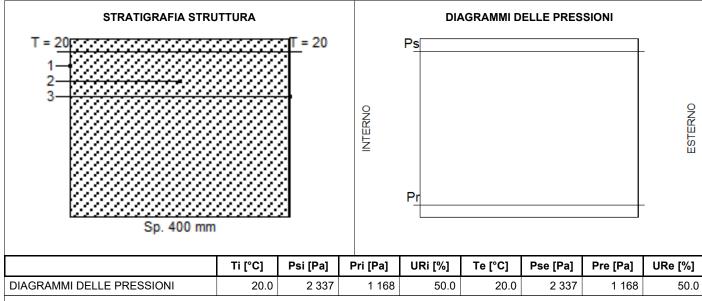
cf2 = Zone riscaldate

	••••	. 00	101041	, .b.	9	0.0	-49	, 19	•	• • • • • • • • • • • • • • • • • • • •		
Ti [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0
Psi [Pa]	2 337.0	2 337.0	2 337.0	2 337.0	3 359.5	3 359.5	3 359.5	3 359.5	3 359.5	2 337.0	2 337.0	2 337.0
Pri [Pa]	1 168.5	1 168.5	1 168.5	1 168.5	1 679.7	1 679.7	1 679.7	1 679.7	1 679.7	1 168.5	1 168.5	1 168.5
URi [%]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Te [°C]	-0.7	2.4	7.3	10.5	16.3	20.3	22.0	20.5	15.7	12.0	4.3	-0.6
Pse [Pa]	576.2	725.7	1 022.2	1 269.0	1 852.4	2 380.7	2 642.4	2 410.3	1 782.7	1 401.8	830.2	581.0
Pre [Pa]	477.7	642.3	700.2	923.9	1 061.4	1 449.8	1 738.7	1 930.6	1 208.7	1 180.3	696.5	547.3
URe [%]	82.9	88.5	68.5	72.8	57.3	60.9	65.8	80.1	67.8	84.2	83.9	94.2

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

Scheda: MR5

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI


Codice Struttura: Mr.04

Descrizione Struttura: Portante interna in pietra

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Muratura in pietra	400	2.400	6.000	1 000.00	0.019	1000	0.167
3	3 Adduttanza Esterna			7.700			0	0.130
	RESISTENZA = 0.426 m ² K/W					TRASMIT	ΤΔΝΖΔ = 2 345	W/m²K

RESISTENZA = 0.426 m ² K/W		TRASMITTANZA = 2.345 W/m ² K
SPESSORE = 400 mm	CAPACITA' TERMICA AREICA (int) = 86.189 kJ/m²K	MASSA SUPERFICIALE = 1 000 kg/m ²
TRASMITTANZA TERMICA PERIODICA = 0.29 W/m²K	FATTORE DI ATTENUAZIONE = 0.12	SFASAMENTO = 10.84 h

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

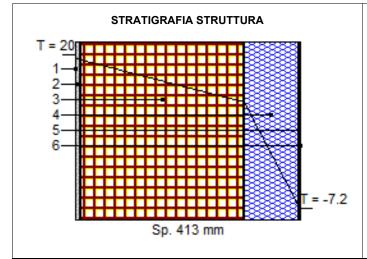
Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

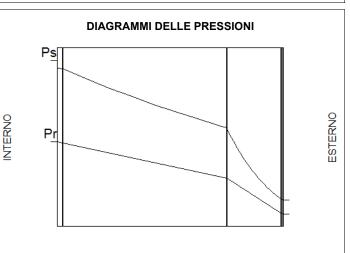
Scheda: MR6

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

Codice Struttura:

Mr.05


Descrizione Struttura: Muratura nuova in poroton da 30 cm con cappotto termico da 10 cm, intonaco interno e rasatura


esterna

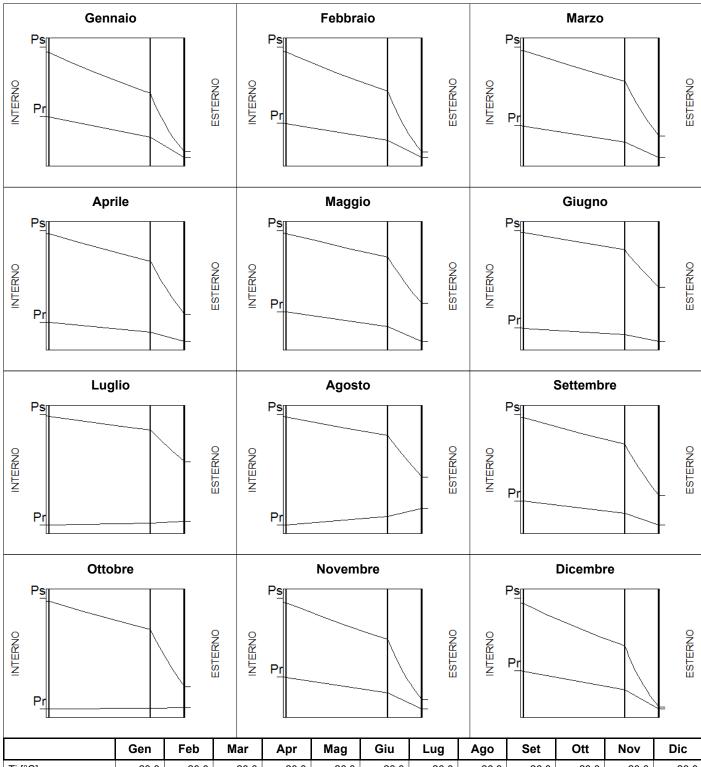
N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Intonaco interno.	10	0.700	70.000	14.00	18.000	1000	0.014
3	Poroton	300	0.230	0.767	225.00	19.300	1000	1.304
4	Polistirene con grafite	100	0.031	0.310	2.50	6.433	1450	3.226
5	Intonaco interno.	3	0.700	233.333	4.20	18.000	1000	0.004
6	Adduttanza Esterna	0		25.000			0	0.040

RESISTENZA = 4.719 m²K/W	•	•			TRASMIT	W/m²K	
SPESSORE = 413 mm	CAPACITA	' TERMICA ARE	ICA (int) = 41.09	02 kJ/m²K	MASSA SUF	PERFICIALE = 2	228 kg/m²
TRASMITTANZA TERMICA PERIODICA = 0.01 W/m²K	FA	TTORE DI ATTE	NUAZIONE = 0.0	7	SFAS	AMENTO = 14.2	28 h
FRSI - FATTORE DI TEMPERATURA = 0.6437							

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]	Te [°C]	Pse [Pa]	Pre [Pa]	URe [%]
DIAGRAMMI DELLE PRESSIONI	20.0	2 337	1 168	50.0	-7.2	333	129	38.7

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.


	VERIFICA IGROMETRICA														
gen feb mar apr mag giu lug ago set ott nov d												dic			
URcf1	82.90	88.50	68.50	72.80	57.30	60.90	65.80	80.10	67.80	84.20	83.90	94.20			
Tcf1	-0.70	2.40	7.30	10.50	16.30	20.30	22.00	20.50	15.70	12.00	4.30	-0.60			
URcf2	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00			
Tcf2	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00			

Tcf2	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00
Verifica Interstiziale VERIFICATA La struttura non è soggetta a fenomeni di condensa interstiziale.												
Verifica f	ormazione	muffe	VERIFIC		Fattore di te ammissibile	•			(mese critic	co: Gennaic).Valore m	assimo

La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

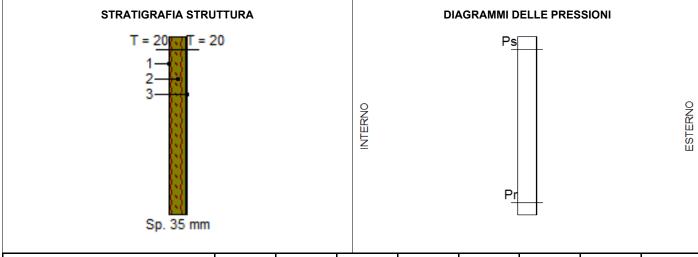
cf1 = Esterno

cf2 = Bagni e scala

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Ti [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0
Psi [Pa]	2 337.0	2 337.0	2 337.0	2 337.0	3 359.5	3 359.5	3 359.5	3 359.5	3 359.5	2 337.0	2 337.0	2 337.0
Pri [Pa]	1 168.5	1 168.5	1 168.5	1 168.5	1 679.7	1 679.7	1 679.7	1 679.7	1 679.7	1 168.5	1 168.5	1 168.5
URi [%]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Te [°C]	-0.7	2.4	7.3	10.5	16.3	20.3	22.0	20.5	15.7	12.0	4.3	-0.6
Pse [Pa]	576.2	725.7	1 022.2	1 269.0	1 852.4	2 380.7	2 642.4	2 410.3	1 782.7	1 401.8	830.2	581.0
Pre [Pa]	477.7	642.3	700.2	923.9	1 061.4	1 449.8	1 738.7	1 930.6	1 208.7	1 180.3	696.5	547.3
URe [%]	82.9	88.5	68.5	72.8	57.3	60.9	65.8	80.1	67.8	84.2	83.9	94.2

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

Scheda: PR1


CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

Codice Struttura: P.01

Descrizione Struttura: Porte interne

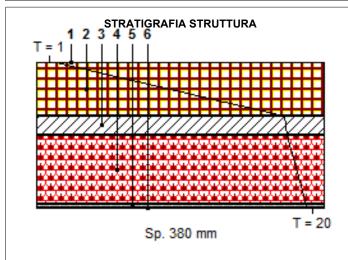
N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Abete (flusso perpendicolare alle fibre).	35	0.120	3.429	15.75	0.300	1700	0.292
3	Adduttanza Esterna	0		7.700			0	0.130
	RESISTENZA = 0.551 m ² K/W	•		,		TRASMIT	TANZA = 1.814	W/m²K
	SPESSORE = 35 mm					MASSA SU	PERFICIALE =	16 kg/m²

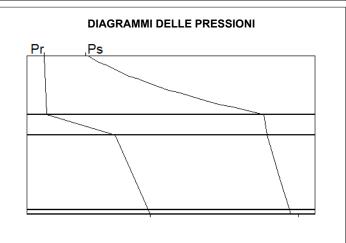
s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]	Te [°C]	Pse [Pa]	Pre [Pa]	URe [%]
DIAGRAMMI DELLE PRESSIONI	20.0	2 337	1 168	50.0	20.0	2 337	1 168	50.0

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI


Codice Struttura: SL.06


Descrizione Struttura: Solaio bagni in laterizio con isolamento in lana di roccia da 14 cm

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(da superiore a inferiore)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Superiore	0		10.000			0	0.100
2	Lana di roccia	140	0.037	0.264	21.00	193.000	1030	3.784
3	CLS di aggregati naturali - a struttura chiusa - pareti protette - mv.2000.	50	1.162	23.230	100.00	2.600	1000	0.043
4	Blocco da solaio di laterizio (495*160*250) spessore 180			3.333	171.00	19.000	840	0.300
5	Intonaco interno.	10	0.700	70.000	14.00	18.000	1000	0.014
6	Adduttanza Inferiore	0		10.000			0	0.100

RESISTENZA = 4.341 m ² K/W		TRASMITTANZA = 0.230 W/m ² K
SPESSORE = 380 mm	CAPACITA' TERMICA AREICA = 57.700 kJ/m²K	MASSA SUPERFICIALE = 292 kg/m ²
TRASMITTANZA TERMICA PERIODICA = 0.03 W/m²K	FATTORE DI ATTENUAZIONE = 0.15	SFASAMENTO = 11.96 h
FRSI - FATTORE DI TEMPERATURA = 0.0000		

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

	Ts [°C]	Pss [Pa]	Prs [Pa]	URs [%]	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]
DIAGRAMMI DELLE PRESSIONI	1.0	656	328	50.0	20.0	2 337	1 168	50.0

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

	VERIFICA IGROMETRICA											
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic
URcf1	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
Tcf1	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00
URcf2	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
Tcf2	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00

Verifica Interstiziale	VERIFICATA	La struttura non è soggetta a fenomeni di condensa interstiziale.
Verifica formazione muffe	VERIFICATA	Valore massimo ammissibile di U = Sempre verificato.

La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Sottotetto

cf2 = Bagni e scala

Gen	naio				Febbra	aio.				Marzo		
D.,		,Ps		Pr,	T CDDT		,Ps	P	r	marzo		,Ps
												
Ар	rile				Magg	io				Giugno)	
Pr		Ps		Pr_			Ps	P	r			Ps
								-				
								L				
Luç	glio				Agos	to			;	Settemb	re	
Pr		Ps		Pr.			Ps	P	r			Ps
								-				
												\dashv
Otto	bre				Novem	bre				Dicemb	re	
Pr,		, <mark>P</mark> s		Pr,			<u>,P</u> s	Р				<u>,P</u> s
												Щ
							$\overline{}$					+
				1					-			
	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Ts [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0

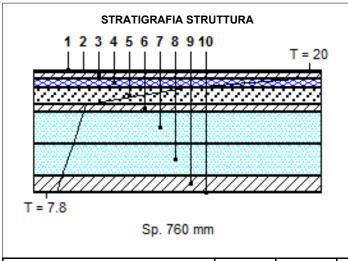
	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Ts [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0
Pss [Pa]	2 337.0	2 337.0	2 337.0	2 337.0	3 359.5	3 359.5	3 359.5	3 359.5	3 359.5	2 337.0	2 337.0	2 337.0
Prs [Pa]	1 168.5	1 168.5	1 168.5	1 168.5	1 679.7	1 679.7	1 679.7	1 679.7	1 679.7	1 168.5	1 168.5	1 168.5
URs [%]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Ti [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0
Psi [Pa]	2 337.0	2 337.0	2 337.0	2 337.0	3 359.5	3 359.5	3 359.5	3 359.5	3 359.5	2 337.0	2 337.0	2 337.0
Pri [Pa]	1 168.5	1 168.5	1 168.5	1 168.5	1 679.7	1 679.7	1 679.7	1 679.7	1 679.7	1 168.5	1 168.5	1 168.5
URi [%]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0

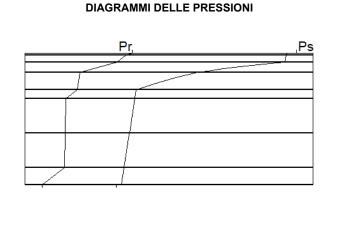
Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

Codice Struttura:

SI.05


Descrizione Struttura: Solaio di fondo bagni con igloo, caldana. massetto alleggerito passaggio impianti,pannello di


isolamento da 6 cm, sottofondo e piastrelle

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R	
	(da superiore a inferiore)	[mm]	[W/mK]	[W/m ² K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]	
1	Adduttanza Superiore	0		5.900			0	0.169	
2	Piastrelle.	10	1.000	100.000	23.00	0.940	840	0.010	
3	Sottofondo in calcestruzzo	40	1.400	35.000	80.00	2.600	1000	0.029	
4	Polistirene - espanso estruso (con pelle) - mv.35	60	0.033	0.550	2.10	0.940	1200	1.818	
5	Calcestruzzo con perle di polistirene	100	0.060	0.600	40.00	24.125	1000	1.667	
6	CLS di aggregati naturali - a struttura chiusa pareti protette - mv.2000.	- 50	1.162	23.230	100.00	2.600	1000	0.043	
7	Strato d'aria verticale da 20 cm	200	1.111	5.555	0.26	193.000	1008	0.180	
8	Strato d'aria verticale da 20 cm	200	1.111	5.555	0.26	193.000	1008	0.180	
9	CLS di aggregati naturali - a struttura chiusa pareti protette - mv.2000.	- 100	1.162	11.615	200.00	2.600	1000	0.086	
10	Adduttanza Inferiore	0		5.900			0	0.169	
	RESISTENZA = 4.352 m ² K/W					TRASMITTANZA = 0.230 W/m²K			
	SPESSORE = 760 mm	CAPACI	TA' TERMICA A	REICA = 58.469	kJ/m²K	MASSA SUPERFICIALE = 446 kg/m²			

RESISTENZA = 4.352 m ² K/W					TRASMITTANZA = 0.230 W/m ² K				
SPESSORE = 760 mm	CAPACI	TA' TERMICA AF	REICA = 58.469 I	kJ/m²K	MASSA SUI	PERFICIALE =	446 kg/m²		
TRASMITTANZA TERMICA PERIODICA = 0.01 W/m²K	FA	TTORE DI ATTEN	NUAZIONE = 0.0	3	SFAS	AMENTO = 18.6	68 h		
FRSI - FATTORE DI TEMPERATURA = 0.0000									

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

	Ts [°C]	Pss [Pa]	Prs [Pa]	URs [%]	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]
DIAGRAMMI DELLE PRESSIONI	20.0	2 337	1 168	50.0	7.8	1 058	529	50.0

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

Codice Struttura:

Solaio di fondo bagni con igloo, caldana. massetto alleggerito passaggio impianti,pannello di isolamento da 6 cm, sottofondo e piastrelle **Descrizione Struttura:**

				VE	RIFICA	IGRO	METR	I C A					
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	
URcf1	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	
Tcf1	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00	
URcf2	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	
Tcf2	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00	
Verifica I	/erifica Interstiziale		VERIFIC	ATA	La struttura	non è sogg	on è soggetta a fenomeni di condensa interstiziale.						
Verifica f	ormazione	muffe	VERIFIC	ATA	Valore mass	simo ammis	sibile di U	= Sempre v	/erificato.				

La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Bagni e scala

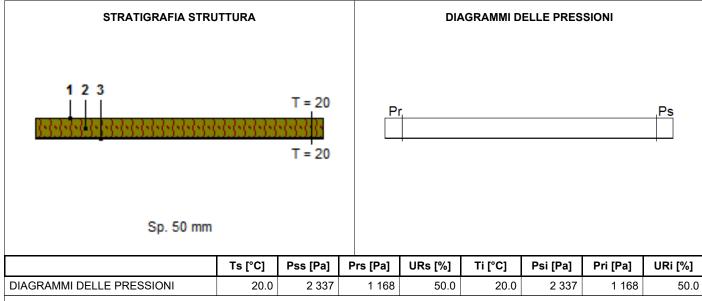
cf2 = Terreno

Genn	aio				Febbra	aio				Marzo		
Pr.		Ps		Pr			Ps	Pi				Ps
Apri	le				Magg	io				Giugno)	
Pr.		Ps		Pr			Ps	Pi	r,			Ps
Lug	lio				Agost	to			;	Settemb	re	
Pr.		Ps		Pr.			Ps	P ₁				Ps
Ottol	ore				Novem	bre				Dicemb	re	
Pr.		Ps		Pr.			Ps	Pi E E	r,			Ps
	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Ts [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0
Pss [Pa]	2 337.0	2 337.0	2 337.0	2 337.0	3 359.5	3 359.5	3 359.5	3 359.5	3 359.5	2 337.0	2 337.0	2 337.0
Prs [Pa]	1 168.5	1 168.5	1 168.5	1 168.5	1 679.7	1 679.7	1 679.7	1 679.7	1 679.7	1 168.5	1 168.5	1 168.5
URs [%]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Ti [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0
Psi [Pa]	2 337.0	2 337.0	2 337.0	2 337.0	3 359.5	3 359.5	3 359.5	3 359.5	3 359.5	2 337.0	2 337.0	2 337.0
Pri [Pa]	1 168.5	1 168.5	1 168.5	1 168.5	1 679.7	1 679.7	1 679.7	1 679.7	1 679.7	1 168.5	1 168.5	1 168.5
URi [%]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI


Codice Struttura: SI.02

Descrizione Struttura: Solaio interpiano in legno

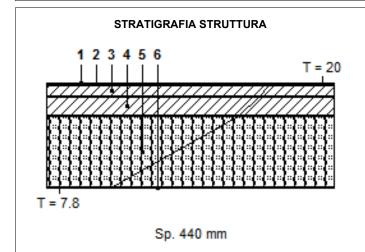
N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(da superiore a inferiore)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Superiore	0		7.700			0	0.130
2	Abete (flusso perpendicolare alle fibre).	50	0.120	2.400	22.50	0.300	1700	0.417
3	Adduttanza Inferiore	0		7.700			0	0.130

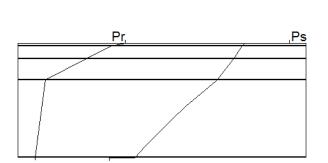
RESISTENZA = 0.676 m ² K/W		TRASMITTANZA = 1.478 W/m ² K
SPESSORE = 50 mm	CAPACITA' TERMICA AREICA = 18.398 kJ/m ² K	MASSA SUPERFICIALE = 23 kg/m²
TRASMITTANZA TERMICA PERIODICA = 1.42 W/m²K	FATTORE DI ATTENUAZIONE = 0.96	SFASAMENTO = 1.54 h

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI


Codice Struttura: Sl.0


Descrizione Struttura: Solaio di fondo su terreno esistente

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(da superiore a inferiore)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Superiore	0		5.900			0	0.169
2	Piastrelle.	10	1.000	100.000	23.00	0.940	840	0.010
3	Sottofondo in calcestruzzo	50	1.400	28.000	100.00	2.600	1000	0.036
4	CLS di aggregati naturali - a struttura chiusa - pareti protette - mv.2000.	80	1.162	14.519	160.00	2.600	1000	0.069
5	Ciottoli e pietre frantumate.	300	0.700	2.333	450.00	37.500	840	0.429
6	Adduttanza Inferiore	0		5.900			0	0.169

RESISTENZA = 0.882 m ² K/W					TRASMIT	TANZA = 1.134	W/m²K
SPESSORE = 440 mm	CAPACI	TA' TERMICA AI	REICA = 62.169 I	kJ/m²K	MASSA SU	PERFICIALE = 7	733 kg/m²
TRASMITTANZA TERMICA PERIODICA = 0.09 W/m²K	FA ⁻	TTORE DI ATTEI	NUAZIONE = 0.0	8	SFAS	AMENTO = 14.3	30 h
FRSI - FATTORE DI TEMPERATURA = 0.0000							

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

DIAGRAMMI DELLE PRESSIONI

	Ts [°C]	Pss [Pa]	Prs [Pa]	URs [%]	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]
DIAGRAMMI DELLE PRESSIONI	20.0	2 337	1 168	50.0	7.8	1 058	529	50.0

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

	VERIFICA IGROMETRICA												
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	
URcf1	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	
Tcf1	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00	
URcf2	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	
Tcf2	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00	

Verifica Ir	nterstiziale		VERIFIC	ATA I	La struttura	non è sogg	etta a feno	meni di con	ndensa inte	rstiziale.	
Verifica fo	ormazione	muffe	VERIFIC	ATA	√alore mass	simo ammis	sibile di U	= Sempre v	erificato.		

La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Zone riscaldate

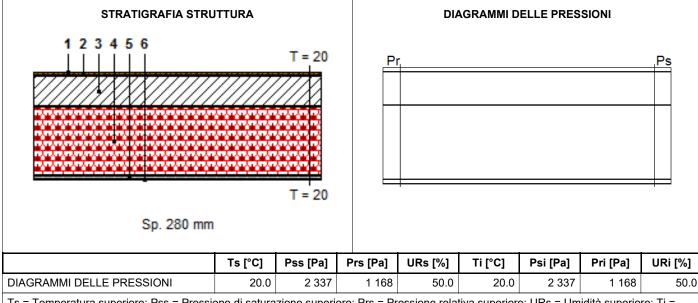
cf2 = Terreno

Genna	io				Febbra	aio				Marzo		
Pr.	Pr Ps						Ps	Pr				Ps
Aprile	9				Magg	io				Giugno)	
Pr.		Ps	ļ	Pr.			Ps	Pr				Ps
Luglio	0				Agost	to				Settemb	re	
Pr.		Ps	ļ	Pr			Ps	Pr				Ps
Ottobr	re				Novem	bre			ı	Dicembi	е	
Pr.		Ps	!	⊃r.			Ps	Pr				Ps

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Ts [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0
Pss [Pa]	2 337.0	2 337.0	2 337.0	2 337.0	3 359.5	3 359.5	3 359.5	3 359.5	3 359.5	2 337.0	2 337.0	2 337.0
Prs [Pa]	1 168.5	1 168.5	1 168.5	1 168.5	1 679.7	1 679.7	1 679.7	1 679.7	1 679.7	1 168.5	1 168.5	1 168.5
URs [%]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Ti [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0
Psi [Pa]	2 337.0	2 337.0	2 337.0	2 337.0	3 359.5	3 359.5	3 359.5	3 359.5	3 359.5	2 337.0	2 337.0	2 337.0
Pri [Pa]	1 168.5	1 168.5	1 168.5	1 168.5	1 679.7	1 679.7	1 679.7	1 679.7	1 679.7	1 168.5	1 168.5	1 168.5
URi [%]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI


Codice Struttura: SI.03

Descrizione Struttura: Solaio interpiano in calcestruzzo

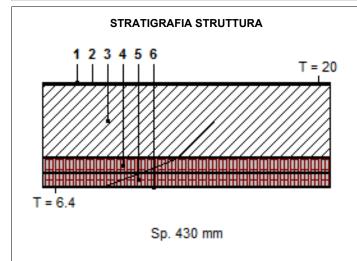
N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(da superiore a inferiore)	[mm]	[W/mK]	[W/m ² K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Superiore	0		7.700			0	0.130
2	Abete (flusso perpendicolare alle fibre).	10	0.120	12.000	4.50	0.300	1700	0.083
3	CLS di aggregati naturali - a struttura chiusa - pareti protette - mv.2000.	80	1.162	14.519	160.00	2.600	1000	0.069
4	Blocco da solaio di laterizio (495*160*250) spessore 180	180		3.333	171.00	19.000	840	0.300
5	Malta di calce o di calce e cemento.	10	0.900	90.000	18.00	8.500	1000	0.011
6	Adduttanza Inferiore	0		7.700			0	0.130

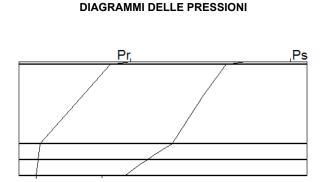
RESISTENZA = 0.723 m ² K/W		TRASMITTANZA = 1.383 W/m ² K
SPESSORE = 280 mm	CAPACITA' TERMICA AREICA = 57.721 kJ/m²K	MASSA SUPERFICIALE = 336 kg/m ²
TRASMITTANZA TERMICA PERIODICA = 0.40 W/m²K	FATTORE DI ATTENUAZIONE = 0.29	SFASAMENTO = 8.46 h

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI


Codice Struttura: SI.04


Descrizione Struttura: Solaio su cantina con volte

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(da superiore a inferiore)	[mm]	[W/mK]	[W/m ² K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Superiore	0		5.900			0	0.169
2	Abete (flusso perpendicolare alle fibre).	10	0.120	12.000	4.50	0.300	1700	0.083
3	CLS di aggregati naturali - a struttura chiusa - pareti protette - mv.2000.	300	1.162	3.872	600.00	2.600	1000	0.258
4	Tavellone per strutture orizzontali (250*60*1200) spessore 60	60		7.143	37.00	20.570	840	0.140
5	Tavellone per strutture orizzontali (250*60*1200) spessore 60	60		7.143	37.00	20.570	840	0.140
6	Adduttanza Inferiore	0		5.900			0	0.169

RESISTENZA = 0.961 m ² K/W	•				TRASMIT	TANZA = 1.041	W/m²K
SPESSORE = 430 mm	CAPACI	TA' TERMICA AI	REICA = 45.708	kJ/m²K	MASSA SUI	679 kg/m²	
TRASMITTANZA TERMICA PERIODICA = 0.08 W/m²K	FA	TTORE DI ATTEI	NUAZIONE = 0.0	7	SFAS	AMENTO = 12.8	35 h
FRSI - FATTORE DI TEMPERATURA = 0.0000							

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

	Ts [°C]	Pss [Pa]	Prs [Pa]	URs [%]	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]
DIAGRAMMI DELLE PRESSIONI	20.0	2 337	1 168	50.0	6.4	961	480	50.0

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

	VERIFICA IGROMETRICA													
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic		
URcf1	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00		
Tcf1	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00		
URcf2	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00		
Tcf2	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00		

Verifica Interstiziale	VERIFICA	TA L	_a struttura r	non è sogg	etta a feno	meni di cor	ndensa inte	rstiziale.	
Verifica formazione muffe	VERIFICA	TA ۱	/alore mass	imo ammis	sibile di U	= Sempre v	verificato.		

La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Zone riscaldate

cf2 = Cantina

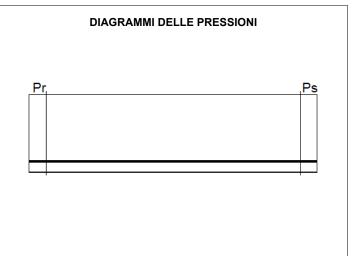
Genn	aio				Febbra	aio				Marzo		
Pr.		Ps		Pr.			Ps	P	r			Ps
Apri	ile				Magg	io				Giugno)	
Pr.		Ps		Pr.			Ps	P	r			Ps
Lug	Luglio			Agosto					•	Settemb	re	
Pr.		Ps		Pr.			Ps	P	r,			Ps
Ottol	ore				Novem	bre				Dicemb	re	
Pr.		Ps		Pr.			Ps	P	r			Ps
Ts [°C]	Gen 20.0	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Ts [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0
Pss [Pa]	2 337.0	2 337.0	2 337.0	2 337.0	3 359.5	3 359.5	3 359.5	3 359.5	3 359.5	2 337.0	2 337.0	2 337.0
Prs [Pa]	1 168.5	1 168.5	1 168.5	1 168.5	1 679.7	1 679.7	1 679.7	1 679.7	1 679.7	1 168.5	1 168.5	1 168.5
URs [%]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Ti [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0
Psi [Pa]	2 337.0	2 337.0	2 337.0	2 337.0	3 359.5	3 359.5	3 359.5	3 359.5	3 359.5	2 337.0	2 337.0	2 337.0
Pri [Pa]	1 168.5	1 168.5	1 168.5	1 168.5	1 679.7	1 679.7	1 679.7	1 679.7	1 679.7	1 168.5	1 168.5	1 168.5
URi [%]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

Codice Struttura:


Descrizione Struttura: Copertura scala e bagni in legno con isolamento da 16 cm

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(da superiore a inferiore)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Superiore	0		7.700			0	0.130
2	Polistirene - espanso estruso (con pelle) - mv.30	160	0.034	0.213	4.80	1.040	1200	4.692
3	Fogli di materiale sintetico.	3	0.230	76.667	3.30	0.010	900	0.013
4	Assito in legno per tetto	25	0.150	6.000	13.75	4.500	1600	0.167
5	Adduttanza Inferiore	0		7.700			0	0.130

RESISTENZA = 5.132 m ² K/W					TRASMIT	TANZA = 0.195	W/m²K
SPESSORE = 188 mm	CAPACI	TA' TERMICA AI	REICA = 24.770	kJ/m²K	MASSA SU	22 kg/m²	
TRASMITTANZA TERMICA PERIODICA = 0.18 W/m²K	FA	TTORE DI ATTEI	NUAZIONE = 0.9	1	SFAS	SAMENTO = 2.88	8 h

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

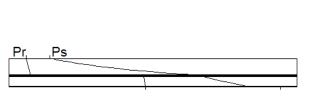
T = 20 T = 20 T = 20 T = 20

	Ts [°C]	Pss [Pa]	Prs [Pa]	URs [%]	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]
DIAGRAMMI DELLE PRESSIONI	20.0	2 337	1 168	50.0	20.0	2 337	1 168	50.0

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

Codice Struttura: SI.07


Descrizione Struttura: Copertura esistente in legno con isolamento da 4 cm

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(da superiore a inferiore)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Superiore	0		25.000			0	0.040
2	Polistirene espanso in lastre stampate - mv.30	40	0.039	0.962	1.20	3.150	1200	1.039
3	Fogli di materiale sintetico.	3	0.230	76.667	3.30	0.010	900	0.013
4	Assito in legno per tetto	25	0.150	6.000	13.75	4.500	1600	0.167
5	Adduttanza Inferiore	0		10.000			0	0.100

RESISTENZA = 1.359 m ² K/W	•	•			TRASMITTANZA = 0.736 W/m ² K			
SPESSORE = 68 mm	CAPACITA' TERMICA AREICA = 21.300 kJ/m²K			kJ/m²K	MASSA SU	PERFICIALE =	18 kg/m²	
TRASMITTANZA TERMICA PERIODICA = 0.71 W/m²K	FA	TTORE DI ATTEI	NUAZIONE = 0.9	7	SFASAMENTO = 1.22 h			
FRSI - FATTORE DI TEMPERATURA = 0.6437								

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

DIAGRAMMI DELLE PRESSIONI

Sp. 68 mm

	Ts [°C]	Pss [Pa]	Prs [Pa]	URs [%]	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]
DIAGRAMMI DELLE PRESSIONI	-7.2	333	129	38.7	20.0	2 337	1 168	50.0

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

				V E	RIFICA	IGRO	METR	I C A				
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic
URcf1	82.90	88.50	68.50	72.80	57.30	60.90	65.80	80.10	67.80	84.20	83.90	94.20
Tcf1	-0.70	2.40	7.30	10.50	16.30	20.30	22.00	20.50	15.70	12.00	4.30	-0.60
URcf2	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
Tcf2	20.00	20.00	20.00	20.00	26.00	26.00	26.00	26.00	26.00	20.00	20.00	20.00
Verifica I	nterstiziale		VERIFIC	ATA	La struttura non è soggetta a fenomeni di condensa interstiziale.							
Verifica formazione muffe			VERIFIC	ATA	Fattore di temperatura minima fRsi = 0.6437 (mese critico: Gennaio). Valore mammissibile di U = 1.4252 W/m²K.						assimo	

La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Esterno

cf2 = Zone riscaldate

Gennaio	Febbraio	Marzo				
Pr. ,Ps	Pr Ps	Pr Ps				
Aprile	Maggio	Giugno				
Pr Ps	Pr ,Ps	Pr Ps				
Luglio	Agosto	Settembre				
Pr ,Ps	Pr ,Ps	Pr ,Ps				
Ottobre	Novembre	Dicembre				
Pr Ps	Pr. Ps	Pr. Ps				
Gen Feb M	ar Apr Mag Giu Lug	Ago Set Ott Nov Dic				

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Ts [°C]	-0.7	2.4	7.3	10.5	16.3	20.3	22.0	20.5	15.7	12.0	4.3	-0.6
Pss [Pa]	576.2	725.7	1 022.2	1 269.0	1 852.4	2 380.7	2 642.4	2 410.3	1 782.7	1 401.8	830.2	581.0
Prs [Pa]	477.7	642.3	700.2	923.9	1 061.4	1 449.8	1 738.7	1 930.6	1 208.7	1 180.3	696.5	547.3
URs [%]	82.9	88.5	68.5	72.8	57.3	60.9	65.8	80.1	67.8	84.2	83.9	94.2
Ti [°C]	20.0	20.0	20.0	20.0	26.0	26.0	26.0	26.0	26.0	20.0	20.0	20.0
Psi [Pa]	2 337.0	2 337.0	2 337.0	2 337.0	3 359.5	3 359.5	3 359.5	3 359.5	3 359.5	2 337.0	2 337.0	2 337.0
Pri [Pa]	1 168.5	1 168.5	1 168.5	1 168.5	1 679.7	1 679.7	1 679.7	1 679.7	1 679.7	1 168.5	1 168.5	1 168.5
URi [%]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0

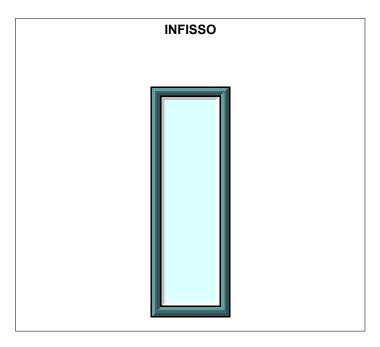
Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

Scheda: FN1

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI

Codice Struttura: F.01

Descrizione Struttura: Serramenti di nuova installazione


Dimensioni: L = 0.70 m; H = 1.00 m

SERRAMENTO SINGOLO								
DESCRIZIONE	Ag	Af	Lg	Ug	Uf	kl	Uw	Fg
	[m²]	[m²]	[m]	[W/m ² K]	[W/m²K]	[W/mK]	[W/m ² K]	[-]
INFISSO	0.482	0.218	2.840	0.750	0.950	0.040	0.975	0.50

Ponte Termico Infisso-Parete: = 0 [W/mK]

Fonte - Uf: fornita dal Produttore; Ug: fornita dal Produttore

Ag = Area vetro; Af = Area telaio; Lg = Lunghezza perimetro superficie vetrata; Ug = Trasmittanza termica superficie vetrata; Uf = Trasmittanza termica telaio; kl = Trasmittanza lineica distanziatore (nulla se singolo vetro); Uw = Trasmittanza termica totale serramento; Fg = Trasmittanza di energia solare totale per incidenza normale.

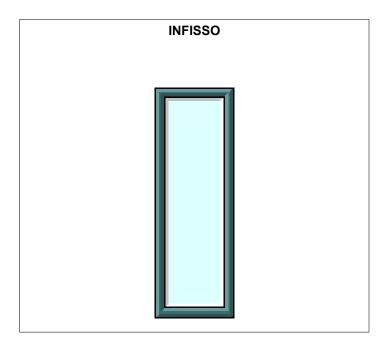
TRASMITTANZA VETRO TOTALE	0.750	W/m²K
TRASMITTANZA TOTALE	0.975	W/m²K
RESISTENZA TERMICA TOTALE	1.026	m²K/W
CONDUTTANZA UNITARIA SUPERFICIALE ESTERNA	25.000	W/m²K
CONDUTTANZA UNITARIA SUPERFICIALE INTERNA	7.700	W/m²K
RESISTENZA UNITARIA SUPERFICIALE ESTERNA	0.040	m²K/W
RESISTENZA UNITARIA SUPERFICIALE INTERNA	0.130	m²K/W
COEFFICIENTE RIDUZIONE AREA TELAIO	0.3120	

Scheda: FN2

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI

Codice Struttura: F.01

Descrizione Struttura: Serramenti di nuova installazione


Dimensioni: L = 0.70 m; H = 1.35 m

SERRAMENTO SINGOLO								
DESCRIZIONE	Ag	Af	Lg	Ug	Uf	kl	Uw	Fg
	[m²]	[m²]	[m]	[W/m ² K]	[W/m²K]	[W/mK]	[W/m ² K]	[-]
INFISSO	0.678	0.267	3.540	0.750	0.950	0.040	0.956	0.50

Ponte Termico Infisso-Parete: = 0 [W/mK]

Fonte - Uf: fornita dal Produttore; Ug: fornita dal Produttore

Ag = Area vetro; Af = Area telaio; Lg = Lunghezza perimetro superficie vetrata; Ug = Trasmittanza termica superficie vetrata; Uf = Trasmittanza termica telaio; kl = Trasmittanza lineica distanziatore (nulla se singolo vetro); Uw = Trasmittanza termica totale serramento; Fg = Trasmittanza di energia solare totale per incidenza normale.

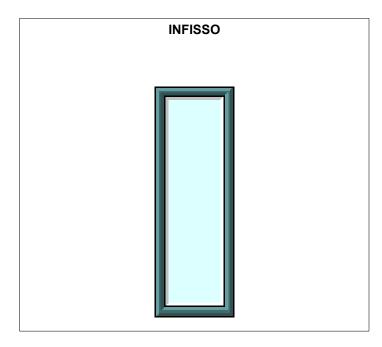
COEFFICIENTE RIDUZIONE AREA TELAIO	0.2830	
RESISTENZA UNITARIA SUPERFICIALE INTERNA	0.130	m²K/W
RESISTENZA UNITARIA SUPERFICIALE ESTERNA	0.040	m²K/W
CONDUTTANZA UNITARIA SUPERFICIALE INTERNA	7.700	W/m²K
CONDUTTANZA UNITARIA SUPERFICIALE ESTERNA	25.000	W/m²K
RESISTENZA TERMICA TOTALE	1.046	m²K/W
TRASMITTANZA TOTALE	0.956	W/m²K
TRASMITTANZA VETRO TOTALE	0.750	W/m²K

Scheda: FN3

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI

Codice Struttura: F.01

Descrizione Struttura: Serramenti di nuova installazione


Dimensioni: L = 3.50 m; H = 1.50 m

SERRAMENTO SINGOLO								
DESCRIZIONE	Ag	Af	Lg	Ug	Uf	kl	Uw	Fg
	[m²]	[m²]	[m]	[W/m ² K]	[W/m²K]	[W/mK]	[W/m ² K]	[-]
INFISSO	4.570	0.680	9.440	0.750	0.950	0.040	0.848	0.50

Ponte Termico Infisso-Parete: = 0 [W/mK]

Fonte - Uf: fornita dal Produttore; Ug: fornita dal Produttore

Ag = Area vetro; Af = Area telaio; Lg = Lunghezza perimetro superficie vetrata; Ug = Trasmittanza termica superficie vetrata; Uf = Trasmittanza termica telaio; kl = Trasmittanza lineica distanziatore (nulla se singolo vetro); Uw = Trasmittanza termica totale serramento; Fg = Trasmittanza di energia solare totale per incidenza normale.

TRASMITTANZA VETRO TOTALE	0.750	W/m²K
TRASMITTANZA TOTALE	0.848	W/m²K
RESISTENZA TERMICA TOTALE	1.179	m²K/W
CONDUTTANZA UNITARIA SUPERFICIALE ESTERNA	25.000	W/m²K
CONDUTTANZA UNITARIA SUPERFICIALE INTERNA	7.700	W/m²K
RESISTENZA UNITARIA SUPERFICIALE ESTERNA	0.040	m²K/W
RESISTENZA UNITARIA SUPERFICIALE INTERNA	0.130	m²K/W
COEFFICIENTE RIDUZIONE AREA TELAIO	0.1296	

Scheda: CT1

Centrale Termica: caldaia

La Centrale Termica è composta da 1 impianti.

Impianti

Impianto	Fluido	Tipologia impianto
PRINCIPALE	acqua	combinato (RSC + ACS)

Generatori

		Generatori				
Tipologia	Combustibile	Eta	Pnt	EER	Pnf	Acc. inerziale
caldaia a condensazione						
Gen. a combustione Fossile	Metano	110.19	24.00	-	-	
Eta [%] = Rendimento Termico Utile a carico nominale prestazione in condizione di riferimento; Pnf [kW] = P		condizione di riferim	ento; Pnt [kW] = Po	tenza Termica utile	nominale; EER [%	[6] = Coefficiente di
Fabbisogno di Energia Primaria						
- per Riscaldamento:					37	255.93 kWh
- per ACS (se impianto centralizzato):					2	496.00 kWh
Fabbisogno elettrico complessivo degli	ausiliari:					
- per Riscaldamento:					2	552.18 kWh
- per ACS (se impianto centralizzato):						109.16 kWh
Percentuale d'impegno della Centrale	Termica per gli EOdC cal	colati				100.00 %

Impianto: PRINCIPALE

Fluido: acqua

Tipologia: combinato (RSC + ACS)

Generatori Impianto

Tipologia	Combustibile	Eta	Pnt	EER	Pnf	Acc. inerziale
caldaia a condensazione						
Gen. a combustione Fossile	Metano	110.19	24.00	-	-	
Eta [%] = Rendimento Termico Utile a carico nominale o 0		condizione di riferime	ento; Pnt [kW] = Po	tenza Termica utile	nominale; EER [%]	= Coefficiente di

Valori riferiti a "caldaia a condensazione

	Un.Mis.	Ott	Nov	Dic	Gen	Feb	Mar	Apr	Totale
EtaPh	%	-	-	-	-	-	-	-	104.94
QhGNout	kWh	2 216.63	5 316.26	7 544.39	7 567.92	5 517.49	3 916.81	1 794.11	33 873.63
QhGNout_d	kWh	2 216.63	5 316.26	7 544.39	7 567.92	5 517.49	3 916.81	1 794.11	33 873.63
QhGNrsd	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EtaGNh	%	110.04	110.17	110.26	110.26	110.20	110.05	110.04	-
QIGNh	kWh	-202.27	-490.86	-701.98	-704.22	-510.90	-357.61	-163.73	-3 131.56
QxGNh	kWh	38.59	61.84	71.37	71.45	59.77	57.87	31.30	392.18
QhGNin	kWh	2 014.37	4 825.40	6 842.41	6 863.71	5 006.60	3 559.21	1 630.38	30 742.07
CMBh	Sm³	213.16	510.62	724.06	726.32	529.80	376.64	172.53	3 253.13
QwGNout_I	kWh	178.59	198.43	205.05	205.05	185.20	205.05	145.52	1 322.87
QwGNout_	kWh	178.59	198.43	205.05	205.05	185.20	205.05	145.52	1 322.87
d_l									
QwGNrsd_I	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EtaGNwl	%	110.04	110.17	110.26	110.26	110.20	110.05	110.04	-
QIGNw_I	kWh	-16.30	-18.32	-19.08	-19.08	-17.15	-18.72	-13.28	-121.93
QxGNw_I	kWh	3.11	2.31	1.94	1.94	2.01	3.03	2.54	16.87
QwGNin_I	kWh	162.29	180.11	185.97	185.97	168.05	186.32	132.24	1 200.95
CMBwl	Sm³	17.17	19.06	19.68	19.68	17.78	19.72	13.99	127.08

EtaPh = Rendimento di Produzione per RISCALDAMENTO; QhGNout = Fabbisogno di Energia Termica richiesto al Generatore per il Riscaldamento; QhGNout_d = Energia Termica produta dal Generatore per Riscaldamento; ChGNrsd = Fabbisogno di Energia Termica non soddisfatto dal Generatore per Riscaldamento; EtaGNh = Rendimento di Generazione per Riscaldamento; QIGNh = Perdite di Generazione; QxGNh = Fabbisogno di Energia Elettrica per gli ausiliari della Generazione; QhGNin = Fabbisogno di Energia Termica in Ingresso al Generatore per Riscaldamento; CMBh = Fabbisogno di combustibile(Metano); QwGNout_l = Fabbisogno di Energia Termica richiesto al Generatore per ACS (periodo invernale); QwGNout_d = Energia Termica prodotta dal Generatore per ACS (periodo invernale); QwGNout_d = Fabbisogno di Energia Termica non soddisfatto dal Generatore ACS (periodo invernale); EtaGNwl = Rendimento di Generazione per ACS (periodo invernale); QWGNout_d = Fabbisogno di Energia Termica non soddisfatto dal Generatore per ACS (periodo invernale); QWGNout_d = Fabbisogno di Energia Termica di generazione per l'ACS (invernale); QWGNin_l = Fabbisogno di Energia elettrica di generazione per l'ACS (invernale); QWGNin_l = Fabbisogno di Energia Termica in Ingresso al Generatore per ACS (periodo invernale); QWGNin_l = Fabbisogno di Combustibile per la produzione di ACS (periodo invernale); QWGNin_l = Fabbisogno di Combustibile per la produzione di ACS (periodo invernale); QWGNin_l = Fabbisogno di Combustibile per la produzione di ACS (periodo invernale); QWGNin_l = Fabbisogno di Combustibile per la produzione di ACS (periodo invernale); QWGNin_l = Fabbisogno di Combustibile per la produzione di ACS (periodo invernale); QWGNin_l = Fabbisogno di Energia Termica non soddisfatto dal Generatore per ACS (periodo invernale); QWGNin_l = Fabbisogno di Energia Termica non soddisfatto dal Generatore per ACS (periodo invernale); QWGNin_l = Fabbisogno di Energia Termica non soddisfatto dal Generatore per ACS (periodo invernale); QWGNin_l = Fabbisogno di Energia Term

	Un.Mis.	Apr	Mag	Giu	Lug	Ago	Set	Ott	Totale
QwGNout_ E	kWh	52.91	205.05	198.43	205.05	205.05	198.43	26.46	1 091.37
QwGNout_ d_E	kWh	52.91	205.05	198.43	205.05	205.05	198.43	26.46	1 091.37
QwGNrsd_ E	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EtaGNwE	%	112.11	112.11	112.11	112.11	112.11	112.11	112.11	-
QIGNwE	kWh	-5.72	-22.15	-21.44	-22.15	-22.15	-21.44	-2.86	-117.91
QxGNwE	kWh	4.47	17.34	16.78	17.34	17.34	16.78	2.24	92.30
QwGNin_E	kWh	47.20	182.89	176.99	182.89	182.89	176.99	23.60	973.46
CMBwE	Sm³	4.99	19.35	18.73	19.35	19.35	18.73	2.50	103.01

QwGNout_E = Fabbisogno di Energia Termica richiesto al Generatore per ACS (periodo estivo); QwGNout_d_E = Energia Termica prodotta dal Generatore per ACS (periodo estivo); QwGNrsd_E = Fabbisogno di Energia Termica non soddisfatto dal Generatore per ACS (periodo estivo); EtaGNwE = Rendimento di Generazione per ACS (periodo estivo); QlGNwE = Perdite di Generazione per ACS; QxGNwE = Fabbisogno di Energia Elettrica Ausiliari del Generatore per ACS; QwGNin_E = Fabbisogno di Energia Termica in Ingresso al Generatore per ACS (periodo estivo); CMBwE = Fabbisogno di combustibile per la produzione di ACS (periodo estivo)(Metano);

Produzione Centralizzata da Solare Termico e Fotovoltaico

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
QhSTout	0	0	0	0	0	0	0	0	0	0	0	0
QwSTout	0	0	0	0	0	0	0	0	0	0	0	0
QxPVout	0	0	0	0	0	0	0	0	0	0	0	0

QhSTout [kWh] = Energia termica Prodotta dall'impianto solare per Riscaldamento; QwSTout [kWh] = Energia termica Prodotta dall'impianto solare per ACS; QxPVout [kWh] = Energia Elettrica prodotta dai moduli.

EOdC serviti dalla Centrale Termica

zone riscald	ate								
"Zone rise	caldate", "Bagr	ni e scala": E1(2) - abitazion	i adibite a resi	denza con occ	upazione saltu	aria		
Classe	Qlt_EPe	VImL	VImN	AreaN	AreaN150	EPh,nd	EPc,nd	EPgInr	EPglr
F	I	683.70	443.05	134.99	0.00	245.49	1.73	294.49	9.27

Classe E Classe Energetica Globale dell' EOdC; Qit_EPe = Qualità Prestazionale dell'Involucro per la climatizzazione estiva; VImL [m³] = Volume lordo; VImN [m³] = Volume netto; AreaN [m²] = Superficie netta calpestabile; AreaN150 [m²] = Superficie netta calpes

Scheda: CT1-EC1

EOdC: zone riscaldate

Volume lordo	683.70	m³
Superficie lorda disperdente (1)	450.65	m²
Rapporto di Forma S/V	0.66	1/m
Volume netto	443.05	m³
Superficie netta calpestabile	134.99	m²
Altezza netta media	3.28	m
Superficie lorda disperdente delle Vetrate	20.35	m²
Capacità Termica totale	39 669.89	kJ/K
Periodo di riscaldamento	5 ott - 22 apr	
Periodo di riscaldamento della Centrale Termica di riferimento	5 ott - 22 apr	
Periodo di raffrescamento	31 mag - 25 ago	
Periodo di raffrescamento della Centrale Termica di riferimento	31 mag - 25 ago	
(1) Superficie lorda disperdente = superficie che delimita il volume lordo riscaldato verso l'esterno e verso ambienti non	n dotati di impianto di riscaldamento	

Risultati

Durata del periodo di riscaldamento	200	G
Fabbisogno di Energia Termica Utile per Riscaldamento	33 138.00	kWh
Fabbisogno di Energia Primaria per il Riscaldamento	37 255.93	kWh
Fabbisogno di Energia Elettrica degli Ausiliari dell'impianto di Riscaldamento	2 552.18	kWh
Durata del periodo di raffrescamento	87	G
Fabbisogno di Energia Utile per Raffrescamento (solo involucro)	-233.49	kWh
Volumi di ACS	65.96	m³
Fabbisogno di Energia Termica per ACS	2 235.35	kWh
Fabbisogno di Energia Primaria per ACS	2 496.00	kWh
Fabbisogno di Energia Elettrica degli Ausiliari dell'impianto di ACS	109.16	kWh

Calcolo di Potenza

Temperatura Esterna di Progetto	-7.17 °C
Dispersione MASSIMA per Trasmissione	13.87 kW
Dispersione MASSIMA per Ventilazione	2.05 kW
Carico termico di Progetto (trasmissione + ventilazione + fattore di ripresa)	15.92 kW

Dati Prestazione Energetica per la Certificazione

Indice di prestazione termica utile per raffrescamento	1.730	kWh/m²anno
Indice di prestazione termica utile per riscaldamento	245.491	kWh/m²anno
Indice di Prestazione Energetica per RISCALDAMENTO - EPi	275.997	kWh/m²anno
Indice di Prestazione Energetica per ACS - EPacs	18.491	kWh/m²anno
Classe Energetica Globale dell' EOdC	F	

Fabbisogni per il Riscaldamento

	11 . 14.	011	NI.	B: 1	•	1	14.	A	T . (.)
	Un.Mis.	Ott	Nov	Dic	Gen	Feb	Mar	Apr	Totale
				INVOL	UCRO				
QhTR	MJ	9 118.04	18 563.24	25 195.38	25 348.23	19 111.94	14 981.32	7 825.52	120 143.66
QhVE	MJ	903.85	1 802.96	2 444.53	2 456.39	1 886.41	1 507.06	830.47	11 831.67
QhHT	MJ	10 021.89	20 366.20	27 639.90	27 804.62	20 998.35	16 488.38	8 655.99	131 975.33
Qsol	MJ	667.67	531.39	365.97	454.83	651.42	1 217.98	1 102.58	4 991.83
Qint	MJ	1 049.76	1 166.40	1 205.28	1 205.28	1 088.64	1 205.28	855.36	7 776.00
Qh,nd [MJ]	MJ	8 323.62	18 671.58	26 069.90	26 145.95	19 261.52	14 083.46	6 740.77	119 296.80
Qh,nd	kWh	2 312.12	5 186.55	7 241.64	7 262.76	5 350.42	3 912.07	1 872.44	33 138.00
				IMPIA	NTO				
Qlr	kWh	6.62	7.35	7.60	7.60	6.86	7.60	5.39	49.01
QIA	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EtaGN		1.10	1.10	1.10	1.10	1.10	1.10	1.10	-
EtaEh		1.07	1.00	0.99	0.99	1.00	1.03	1.07	-
EtaRh		0.98	0.98	0.98	0.98	0.98	0.98	0.98	-
EtaD		0.99	0.99	0.99	0.99	0.99	0.99	0.99	-
				VETTORI E	NERGETICI	•		•	
Qx	kWh	330.19	385.84	406.17	406.25	362.17	392.67	268.90	2 552.18
CMB1	Sm³	213.16	510.62	724.06	726.32	529.80	376.64	172.53	3 253.13

Valori energetici relativi al riscaldamento, in regime di funzionamento continuo per i giorni di attivazione dell'impianto ex D.P.R. 412/93: QhTR = Dispersione per Trasmissione; QhVE = Dispersione per Ventilazione; Qsol = Energia Termica da Apporti Solari; Qint = Energia Termica da Apporti Interni; Qh,nd [MJ] = Fabbisogno di Energia Termica Utile per Riscaldamento; Qh,nd = Fabbisogno di Energia Termica Utile per Riscaldamento; EtaEh = Rendimento di Regolazione; EtaD = Rendimento di Distribuzione; QlA = Perdite di Accumulo; EtaGN = Rendimento di Generazione; CMB1 = Metano;

Fabbisogni per il Raffrescamento

Un.Mis. Mag Giu Lug Ago Totale
--

			INVOLUCRO			
QcTR	MJ	19.85	404.38	246.92	308.48	979.63
QcVE	MJ	5.84	130.77	94.83	103.30	334.74
QcHT	MJ	25.69	535.15	341.74	411.78	1 314.37
QcSol	MJ	15.87	499.99	520.41	355.92	1 392.18
QcInt	MJ	8.62	258.49	267.10	215.41	749.62
Qc,nd [MJ]	MJ	-1.77	-228.63	-445.83	-164.34	-840.57
Qc,nd	kWh	-0.49	-63.51	-123.84	-45.65	-233.49
			IMPIANTO			
QIA	kWh	0.00	0.00	0.00	0.00	0.00
EtaGN		1.00	1.00	1.00	1.00	
EtaEc		1.00	1.00	1.00	1.00	
EtaRc		1.00	1.00	1.00	1.00	-
EtaD		1.00	1.00	1.00	1.00	-
		VET	TORI ENERGETIC	I		
Qxc	kWh	0.00	0.00	0.00	0.00	0.00

Valori energetici relativi al riscaldamento, in regime di funzionamento continuo per i giorni di attivazione dell'impianto ex D.P.R. 412/93: QcTR = Dispersione per Trasmissione; QcVE = Dispersione per Ventilazione; QcSol = Energia Termica da Apporti Solari; QcInt = Energia Termica da Apporti Interni; Qc,nd [MJ] = Fabbisogno di Energia Frigorifera Utile per Raffrescamento; Qc,nd = Fabbisogno di Energia Frigorifera Utile per Raffrescamento; EtaEc = Rendimento di Emissione; EtaRc = Rendimento di Regolazione; EtaD = Rendimento di Distribuzione; QlA = Perdite di Accumulo; EtaGN = Rendimento di Generazione;

Fabbisogni per l' ACS

periodo invernale

	Un.Mis.	Ott	Nov	Dic	Gen	Feb	Mar	Apr	Totale
	-			PERDITE D	I IMPIANTO				
Qwl	kWh	165.35	183.73	189.85	189.85	171.48	189.85	134.73	-
EtaE		1.00	1.00	1.00	1.00	1.00	1.00	1.00	-
EtaD		0.93	0.93	0.93	0.93	0.93	0.93	0.93	-
EtaGN		1.10	1.10	1.10	1.10	1.10	1.10	1.10	-
QIGN	kWh	-16.30	-18.32	-19.08	-19.08	-17.15	-18.72	-13.28	-121.93
				VETTORI E	NERGETICI				
Qx	kWh	3.11	2.31	1.94	1.94	2.01	3.03	2.54	16.87
CMB1	Sm³	17.17	19.06	19.68	19.68	17.78	19.72	13.99	127.08

Qwl = Fabbisogno di Energia Termica per ACS (periodo invernale); EtaE = Rendimento di Erogazione; EtaD = Rendimento di Distribuzione; EtaGN = Rendimento di Generazione; QlGN = Perdite totali di Generazione nella CT relative all'EOdC; Qx = Fabbisogno Totale di Energia Elettrica degli Ausiliari; CMB1 = Metano;

periodo estivo

	Un.Mis.	Apr	Mag	Giu	Lug	Ago	Set	Ott	Totale			
	PERDITE DI IMPIANTO											
QwE	kWh	48.99	189.85	183.73	189.85	189.85	183.73	24.50	-			
EtaE		1.00	1.00	1.00	1.00	1.00	1.00	1.00	-			
EtaD		0.93	0.93	0.93	0.93	0.93	0.93	0.93	-			
EtaGN		1.12	1.12	1.12	1.12	1.12	1.12	1.12	-			
QIGN	kWh	-5.72	-22.15	-21.44	-22.15	-22.15	-21.44	-2.86	-117.91			
				VETTORI E	NERGETICI							
Qx	kWh	4.47	17.34	16.78	17.34	17.34	16.78	2.24	92.30			
CMB1	Sm³	4.99	19.35	18.73	19.35	19.35	18.73	2.50	103.01			

QWE = Fabbisogno di Energia Termica per ACS (periodo estivo); EtaE = Rendimento di Erogazione; EtaD = Rendimento di Distribuzione; EtaGN = Rendimento di Generazione; QIGN = Perdite totali di Generazione nella CT relative all'EOdC; Qx = Fabbisogno Totale di Energia Elettrica degli Ausiliari; CMB1 = Metano;

Riepilogo dispersioni

Dispersioni per Vani

Descrizione vano	Superficie	Qh	Aliquota	Qp	Aliquota
	[m²]	[kWh]	[%]	[W]	[%]
sala polivalente 1	26.17	4 523.31	13.65	2 181.93	13.71
sala polivalente 2 1/2	20.23	4 459.84	13.46	2 146.99	13.49
sala polivalente 2 2/2	6.25	4 226.00	12.75	1 892.03	11.89
sala polivalente 3	26.09	8 293.53	25.03	3 802.83	23.89
sala polivalente 4	26.32	9 309.87	28.09	4 431.28	27.84
bagno dis.	3.80	378.50	1.14	233.86	1.47
wc1	1.34	103.49	0.31	55.71	0.35
wc2	1.90	167.44	0.51	87.41	0.55
ant.	3.40	103.10	0.31	75.00	0.47
scala	9.81	736.50	2.22	466.46	2.93
scala p1	9.68	836.42	2.52	544.55	3.42
Totale	134.99	33 138.00	100.00	15 918.06	100.00

Muri verticali

Tipo struttura	Superficie	U	QhTR	Aliquota	Qp	T esterna	Aliquota
	[m²]	[W/m²K]	[kWh]	[%]	[W]	[°C]	[%]
Perimetrale 1 sp.50	51.48	2.6441	10 157.41	40.81	4 362.83	-7.2	40.66
Porta ingresso	1.89	1.1731	166.50	0.67	72.29	-7.2	0.67
Perimetrale 2 sp.55	69.98	2.5060	12 944.93	52.01	5 594.23	-7.2	52.13
Muratura nuova	109.28	0.2119	1 621.48	6.51	701.10	-7.2	6.53
Totale	232.63		24 890.31	100.00	10 730.45		100.00

Solai superiori

Tipo struttura	Superficie	U	QhTR	Aliquota	Qp	T esterna	Aliquota
	[m²]	[W/m²K]	[kWh]	[%]	[W]	[°C]	[%]
Copertura esistente	69.47	0.7360	4 006.89	91.74	1 389.28	-7.2	91.33
Solaio bagni	30.12	0.2304	360.60	8.26	131.85	1.0	8.67
Totale	99.59		4 367.49	100.00	1 521.13		100.00

Solai inferiori

Tipo struttura	Superficie	U	QhTR	Aliquota	Qp	T esterna	Aliquota
	[m²]	[W/m²K]	[kWh]	[%]	[W]	[°C]	[%]
Solaio di fondo	59.05	1.1336	2 230.78	79.56	816.61	7.8	79.49
Solaio su cantina	8.92	1.0410	342.59	12.22	126.23	6.4	12.29
Solaio di fondo bagni	30.12	0.2298	230.69	8.23	84.45	7.8	8.22
Totale	98.09		2 804.07	100.00	1 027.28		100.00

Finestre

Tipo struttura	Superficie	U	QhTR	Aliquota	Qp	T esterna	Aliquota
	[m²]	[W/m²K]	[kWh]	[%]	[W]	[°C]	[%]
Serramenti	20.35	0.9564	1 311.37	100.00	592.80	-7.2	100.00
Totale	20.35		1 311.37	100.00	592.80		100.00

Dispersioni totali

Componenti	QhTR	Aliquota	Qp	Aliquota
	[kWh]	[%]	[W]	[%]
Muri verticali	24 890.31	74.58	10 730.45	77.36
Solai superiori	4 367.49	13.09	1 521.13	10.97
Solai inferiori	2 804.07	8.40	1 027.28	7.41
Finestre	1 311.37	3.93	592.80	4.27
Ponti termici	0.00	0.00	0.00	0.00
Totale	33 373.24	100.00	13 871.66	100.00

AreaN = Superficie netta disperdente; Qh = Fabbisogno di Energia Termica Utile per Riscaldamento; Qp = Carico termico di Progetto (trasmissione + ventilazione + fattore di ripresa) - POTENZA; U = Trasmittanza termica(comprese le adduttanze); QhTR = Dispersione per Trasmissione.

Riepilogo flussi energetici

Muri verticali

Tipo struttura	Superficie	U	Esposiz	HTR	App.solari	Extraflusso	Cap.termica
	[m²]	[W/m ² K]	[-]	[W/K]	[W]	[W]	[KJ/m²K]
Perimetrale 1 sp.50	33.70	2.6441	Nord	89.11	72.60	89.5	2 135.10
Porta ingresso	1.89	1.1731	Nord	2.22	1.81	2.2	19.51
Perimetrale 1 sp.50	17.77	2.6441	Nord-Ovest	46.99	51.42	47.2	1 053.77
Perimetrale 2 sp.55	11.19	2.5060	Est	28.05	57.47	28.2	838.28
Perimetrale 2 sp.55	41.40	2.5060	Nord	103.76	84.42	104.2	3 007.22
Perimetrale 2 sp.55	17.39	2.5060	Nord-Ovest	43.57	47.85	43.8	1 082.29
Muratura nuova	35.62	0.2119	Est	7.55	15.38	7.6	864.74
Muratura nuova	38.14	0.2119	Sud	8.08	21.80	8.1	1 088.93
Muratura nuova	35.52	0.2119	Nord	7.53	6.13	7.6	1 007.34

Solai superiori

Tipo struttura	Superficie	U	Esposiz	HTR	App.solari	Extraflusso	Cap.termica
	[m²]	[W/m ² K]	[-]	[W/K]	[W]	[W]	[KJ/m²K]
Copertura esistente	69.47	0.7360	Orizzontale	51.13	58.20	102.7	1 116.43
Solaio bagni	30.12	0.2304	Sottotetto	4.86	0.00	0.0	1 167.69

Solai inferiori

Tipo struttura	Superficie	U	Esposiz	HTR	App.solari	Extraflusso	Cap.termica
	[m²]	[W/m ² K]	[-]	[W/K]	[W]	[W]	[KJ/m²K]
Solaio di fondo	59.05	1.1336	Terreno	30.07	0.00	0.0	2 884.87
Solaio su cantina	8.92	1.0410	Cantina	4.62	0.00	0.0	285.84
Solaio di fondo bagni	30.12	0.2298	Terreno	3.11	0.00	0.0	1 183.25

Finestre

Tipo struttura	Aw	w	Esposiz	HTR	App.solari	Extraflusso	DR
	[m²]	[W/m ² K]	[-]	[W/K]	[W]	[W]	[m²/KW]
Serramenti	13.10	0.9564	Nord	10.64	154.32	9.9	0.79
Serramenti	5.14	0.9564	Nord-Ovest	4.20	80.88	3.9	0.79
Serramenti	2.10	0.9747	Est	1.83	53.68	1.7	0.80

AreaN = Superficie netta disperdente; HTR = Coefficiente Globale di scambio termico per Trasmissione.

Fonti Rinnovabili per Riscaldamento e ACS

Total Ramovasiii poi Riodaldamento d'Add	
Solare Termico	
Energia termica Prodotta dall'impianto solare per Riscaldamento (QhSTout)	0.00 kWh
Energia Termica Utile fornita all'EOdC dall'impianto solare per Riscaldamento (QhSTutile)	0.00 kWh
Energia Termica Utile fornita all'EOdC dall'impianto solare per ACS (QwSTutile)	0.00 kWh
Solare Fotovoltaico	
Energia Elettrica totale prodotta dai moduli (QxPVout)	0.00 kWh
Energia Elettrica prodotta e utilizzata per Riscaldamento (QxhUtilePV)	0.00 kWh
Energia Elettrica prodotta e utilizzata per ACS (QxwUtilePV)	0.00 kWh
Energia Elettrica prodotta e utilizzata per la Ventilazione (QxvUtilePV)	0.00 kWh
Energia Elettrica prodotta e utilizzata per l'illuminazione (QxIUtilePV)	0.00 kWh
Pompa di Calore	
Energia Termica prodotta Assimilabile a fonte rinnovabile per Riscaldamento (QhFR_PdC)	0.00 kWh
Energia Termica prodotta Assimilabile a fonte rinnovabile per ACS (QwFR_PdC)	0.00 kWh
Biomasse	
Energia Termica prodotta da Biomassa per Riscaldamento (QhFR_Bio)	0.00 kWh
Energia Termica prodotta da Biomassa per ACS (QwFR_Bio)	0.00 kWh
Teleriscaldamento	
Energia Termica prodotta da fonte rinnovabile per Riscaldamento (QhFR_DH)	0.00 kWh
Energia Termica prodotta da fonte rinnovabile per ACS (QwFR_DH)	0.00 kWh
Cogeneratore	
Energia Elettrica Prodotta da Biomassa (QXFR_CHP)	0.00 kWh
Energia Elettrica Prodotta e utilizzata per Riscaldamento (QXhCHPutile)	0.00 kWh
Energia Elettrica Prodotta e utilizzata per ACS (QXwCHPutile)	0.00 kWh

VERIFICHE DI LEGGE

Riqualificazione: impianto									
	valori LIMITE	valori di Calcolo	Verifica						
A'sol		0.0454	NON RICHIESTO						
H'T		0.9926	NON RICHIESTO						
EPh,nd		245.4910	NON RICHIESTO						
EPc,nd		1.7297	NON RICHIESTO						
EtaGh	73.29	86.17	VERIFICATA						
EtaGc		0.00	NON RICHIESTO						
EtaGw	56.67	87.75	VERIFICATA						
EPgltot		303.7542	NON RICHIESTO						
Fonti Rinnovabili (D.Lgs. 28/2011)								
QwFR_perc		2.01	NON RICHIESTO						
QhcwFR_perc		3.05	NON RICHIESTO						
Pel FR		0.00	NON RICHIESTO						

Nessuna ulteriore VERIFICA di LEGGE è richiesta relativamente alla TRASMITTANZA LIMITE DELLE STRUTTURE DISPERDENTI.

A'sol = Area di captazione solare effettiva; H'T = Coefficiente Globale di scambio termico medio per Trasmissione; EPh,nd [kWh/m²anno] = Indice di prestazione termica utile per riscaldamento; EPc,nd [kWh/m²anno] = Indice di prestazione termica utile per riscaldamento; EtaGh [%] = Rendimento Globale Medio Stagionale; EtaGc [%] = Rendimento Globale Medio Stagionale; EtaGc [%] = Rendimento Globale Medio Stagionale; Epgltot [kWh/m²anno] = Indice di Prestazione Energetica GLOBALE totale; Eta100 [%] = Rendimento Termico Utile a carico nominale; Eta30 [%] = Rendimento Termico Utile al 30% del carico nominale; COP [%] = COP/GUE della Pompa di Calore; QwFR_perc [%] = Percentuale di energia da fonti rinnovabili per l'ACS; QhcwFR_perc [%] = Percentuale di energia da fonti rinnovabili;

Scheda: CT1-EC1-ZN1

ZONA: Vn.01 - Zone riscaldate

EOdC: zone riscaldate

Centrale Termica: caldaia

Destinazione d'uso: E1(2) - abitazioni adibite a residenza con occupazione saltuaria		
Volume lordo	511.13	m³
Volume netto	354.54	m³
Superficie lorda	137.43	m²
Superficie netta calpestabile	105.07	m²
Altezza netta media	3.37	m
Capacità Termica	29 955.78	kJ/K
Apporti Interni medi globali	3.33	W/m²
Ventilazione naturale	106.36	m³/h
Ventilazione meccanica: assente		
Volumi di ACS	51.34	m³
Salto termico ACS	29.17	°C
Fabbisogno di Energia Termica per ACS	1 739.97	kWh
Dispersione MASSIMA per Trasmissione (POTENZA)	12.82	kW
Dispersione MASSIMA per Ventilazione (POTENZA)	1.64	kW
Dispersione MASSIMA per Trasmissione + Ventilazione (POTENZA)	14.46	kW
Fattore di ripresa	0.00	W / m²

Caratteristiche Emissione e Regolazione: impianto di Riscaldamento

Impianto	Tipologia di erogazione	Tipologia della regolazione
PRINCIPALE	Ventilconvettori	Per singolo ambiente più climatica Proporzionale 1 °C

Fabbisogni per Riscaldamento

	Un.Mis.	Ott	Nov	Dic	Gen	Feb	Mar	Apr	Totale
HTR	W/K	412.34	412.34	412.34	412.34	412.34	412.34	412.34	0.00
HVE	W/K	35.45	35.45	35.45	35.45	35.45	35.45	35.45	0.00
QhTR	MJ	8 439.70	17 172.91	23 274.53	23 430.58	17 669.57	13 867.57	7 229.79	111 084.65
QhVE	MJ	723.28	1 442.77	1 956.16	1 965.66	1 509.55	1 205.98	664.56	9 467.96
QhHT	MJ	9 162.98	18 615.68	25 230.69	25 396.24	19 179.12	15 073.56	7 894.35	120 552.62
Qsol	MJ	496.71	368.63	254.14	309.80	465.60	899.77	848.21	3 642.86
Qint	MJ	817.12	907.91	938.18	938.18	847.38	938.18	665.80	6 052.75
Qh,nd [MJ]	MJ	7 863.73	17 342.09	24 039.60	24 149.66	17 869.15	13 250.14	6 410.82	110 925.19
Qh,nd	kWh	2 184.37	4 817.25	6 677.67	6 708.24	4 963.65	3 680.59	1 780.78	30 812.55
Qlr	kWh	5.15	5.72	5.91	5.91	5.34	5.91	4.20	38.15
QIEh	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
QIRh	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
QhDout	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Qwl	kWh	128.71	143.01	147.78	147.78	133.48	147.78	104.87	953.41
QI	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Valori energetici relativi al riscaldamento, in regime di funzionamento continuo per i giorni di attivazione dell'impianto ex D.P.R. 412/93: HTR = Coefficiente Globale di scambio termico per Trasmissione; HVE = Coefficiente Globale di scambio termico per Ventilazione; QhTR = Dispersione per Trasmissione; QhVE = Dispersione per Ventilazione; QhHT = Dispersione Totale (Trasmissione + Ventilazione); Qsol = Energia Termica da Apporti Solari; Qint = Energia Termica da Apporti Interni; Qh,nd [MJ] = Fabbisogno di Energia Termica Utile per Riscaldamento; Qh-nd = Fabbisogno di Energia Termica Utile per Riscaldamento; QlFn = Perdite di regolazione; QhDut = Fabbisogno di Energia Termica Utile per Riscaldamento; QlRn = Perdite di regolazione; QhDut = Fabbisogno di Energia Termica richiesto al sistema di Distribuzione del Riscaldamento; QwI = Fabbisogno di Energia Termica per ACS (periodo invernale); QI = Fabbisogno di Energia Elettrica per l'illuminazione artificiale.

	Un.Mis.	Apr	Mag	Giu	Lug	Ago	Set	Ott	Totale	
QwE	kWh	38.14	147.78	143.01	147.78	147.78	143.01	19.07	786.56	
QI	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
QwE = Fabbisogn	QWE = Fabbisogno di Energia Termica per ACS (periodo estivo); QI = Fabbisogno di Energia Elettrica per l'illuminazione artificiale);									

Rendimenti

	Ott	Nov	Dic	Gen	Feb	Mar	Apr				
EtaU	0.9889	0.9977	0.9990	0.9989	0.9977	0.9921	0.9799				
EtaEh	100.64	100.64	100.64	100.64	100.64	100.64	100.64				
EtaRh	98.00	98.00	98.00	98.00	98.00	98.00	98.00				
EtaU = Fattore di utilizz	EtaU = Fattore di utilizzazione degli Apporti gratuiti; EtaEc [%] = Rendimento di emissione per Raffrescamento.										

Vani della Zona: dispersioni massime

VANO	Area	Volume	QhTRp	QhVEp	Qp
sala polivalente 1	26.17	70.66	1 856	326	2 182
sala polivalente 2 1/2	20.23	60.70	1 867	280	2 147
sala polivalente 2 2/2	6.25	18.76	1 805	87	1 892
sala polivalente 3	26.09	101.77	3 333	470	3 803
sala polivalente 4	26.32	102.65	3 957	474	4 431

Area [m2] = Superficie netta calpestabile; Volume [m3] = Volume netto; QhTRp [W] = Dispersione massima per trasmissione (potenza); QhVEp [W] = Dispersione MASSIMA per Ventilazione (POTENZA); Qp [W] = Dispersione massima (trasmissione, ventilazione, fattore di ripresa)

Scheda: CT1-EC1-ZN2

ZONA: Vn.06 - Bagni e scala

EOdC: zone riscaldate

Centrale Termica: caldaia

	470.57	2
Volume lordo	172.57	
Volume netto	88.51	m³
Superficie lorda	45.36	m²
Superficie netta calpestabile	29.91	m²
Altezza netta media	2.96	m
Capacità Termica	9 714.11	kJ/K
Apporti Interni medi globali	3.33	W/m²
Ventilazione naturale	26.55	m³/h
Ventilazione meccanica: assente		
Volumi di ACS	14.62	m³
Salto termico ACS	29.17	°C
Fabbisogno di Energia Termica per ACS	495.38	kWh
Dispersione MASSIMA per Trasmissione (POTENZA)	1.05	kW
Dispersione MASSIMA per Ventilazione (POTENZA)	0.41	kW
Dispersione MASSIMA per Trasmissione + Ventilazione (POTENZA)	1.46	kW
Fattore di ripresa	0.00	W / m²

Caratteristiche Emissione e Regolazione: impianto di Riscaldamento

Impianto Tipologia di erogazione		Tipologia della regolazione			
PRINCIPALE	Radiatori su parete esterna isolata	Per singolo ambiente più climatica Proporzionale 1 °C			

Fabbisogni per Riscaldamento

	Un.Mis.	Ott	Nov	Dic	Gen	Feb	Mar	Apr	Totale
HTR	W/K	34.99	34.99	34.99	34.99	34.99	34.99	34.99	0.00
HVE	W/K	8.85	8.85	8.85	8.85	8.85	8.85	8.85	0.00
QhTR	MJ	678.34	1 390.32	1 920.85	1 917.65	1 442.37	1 113.74	595.73	9 059.01
QhVE	MJ	180.57	360.19	488.36	490.73	376.86	301.08	165.91	2 363.71
QhHT	MJ	858.91	1 750.52	2 409.21	2 408.38	1 819.23	1 414.82	761.64	11 422.71
Qsol	MJ	170.96	162.76	111.83	145.03	185.81	318.20	254.37	1 348.97
Qint	MJ	232.64	258.49	267.10	267.10	241.26	267.10	189.56	1 723.25
Qh,nd [MJ]	MJ	459.89	1 329.49	2 030.30	1 996.29	1 392.36	833.33	329.95	8 371.60
Qh,nd	kWh	127.75	369.30	563.97	554.52	386.77	231.48	91.65	2 325.44
Qlr	kWh	1.47	1.63	1.68	1.68	1.52	1.68	1.19	10.86
QIEh	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
QIRh	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
QhDout	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Qwl	kWh	36.64	40.72	42.07	42.07	38.00	42.07	29.86	271.44
QI	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Valori energetici relativi al riscaldamento, in regime di funzionamento continuo per i giorni di attivazione dell'impianto ex D.P.R. 412/93: HTR = Coefficiente Globale di scambio termico per Trasmissione; HVE = Coefficiente Globale di scambio termico per Ventilazione; QhTR = Dispersione per Trasmissione; QhVE = Dispersione per Ventilazione; QhHT = Dispersione Totale (Trasmissione + Ventilazione); Qsol = Energia Termica da Apporti Solari; Qint = Energia Termica da Apporti Interni; Qh,nd [MJ] = Fabbisogno di Energia Termica Utile per Riscaldamento; Qh-nd = Fabbisogno di Energia Termica Utile per Riscaldamento; QlFn = Perdite di regolazione; QhDut = Fabbisogno di Energia Termica Utile per Riscaldamento; QlRn = Perdite di regolazione; QhDut = Fabbisogno di Energia Termica richiesto al sistema di Distribuzione del Riscaldamento; QwI = Fabbisogno di Energia Termica per ACS (periodo invernale); QI = Fabbisogno di Energia Elettrica per l'illuminazione artificiale.

	Un.Mis.	Apr	Mag	Giu	Lug	Ago	Set	Ott	Totale
QwE	kWh	10.86	42.07	40.72	42.07	42.07	40.72	5.43	223.94
QI	kWh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
QwE = Fabbisogno di Energia Termica per ACS (periodo estivo); QI = Fabbisogno di Energia Elettrica per l'illuminazione artificiale);									

Rendimenti

	Ott	Nov	Dic	Gen	Feb	Mar	Apr
EtaU	0.9887	0.9995	0.9999	0.9999	0.9995	0.9935	0.9724
EtaEh	98.00	98.00	98.00	98.00	98.00	98.00	98.00
EtaRh	98.00	98.00	98.00	98.00	98.00	98.00	98.00
Ftal I = Fattore di utilizzazione degli Apporti gratuiti: FtaFc [%] = Rendimento di emissione per Raffrescamento							

Fabbisogni per il Raffrescamento

	Un.Mis.	Mag	Giu	Lug	Ago	Totale
Giorni	giorno	1	30	31	25	87
QcTR	MJ	19.85	404.38	246.92	308.48	979.63
QcVE	MJ	5.84	130.77	94.83	103.30	334.74
QcHT	MJ	25.69	535.15	341.74	411.78	1 314.37
QcSol	MJ	15.87	499.99	520.41	355.92	1 392.18
QcInt	MJ	8.62	258.49	267.10	215.41	749.62
EtaU	-	0.88	0.99	1.00	0.99	-
Qc,nd [MJ]	MJ	-1.77	-228.63	-445.83	-164.34	-840.57
Qc,nd	kWh	-0.49	-63.51	-123.84	-45.65	-233.49
QIEc	kWh	0.00	0.00	0.00	0.00	0.00
QoutDc	kWh	0.00	0.00	0.00	0.00	0.00

Valori energetici relativi al raffrescamento, in regime di funzionamento continuo, per i giorni di attivazione indicati: Giorni = Giorni di attivazione dell'impianto di raffrescamento; QcTR = Dispersione per Trasmissione; QcVE = Dispersione per Ventilazione; QcHT = Dispersione Totale (Trasmissione + Ventilazione); QcSol = Energia Termica da Apporti Solari; QcInt = Energia Termica da Apporti Interni; EtaU = Fattore di utilizzazione delle dispersioni termiche; Qc,nd = Fabbisogno di Energia Frigorifera Utile per Raffrescamento; QlEc = Perdite di Emissione; QoutDc = Fabbisogno di Energia Termica alla Distribuzione;

Vani della Zona: dispersioni massime

VANO	Area	Volume	QhTRp	QhVEp	Qp
bagno dis.	3.80	10.25	187	47	234
wc1	1.34	3.61	39	17	56
wc2	1.90	5.12	64	24	87
ant.	3.40	9.18	33	42	75
scala	9.81	26.48	344	122	466
scala p1	9.68	33.87	388	156	545

Area [m2] = Superficie netta calpestabile; Volume [m3] = Volume netto; QhTRp [W] = Dispersione massima per trasmissione (potenza); QhVEp [W] = Dispersione MASSIMA per Ventilazione (POTENZA); Qp [W] = Dispersione massima (trasmissione, ventilazione, fattore di ripresa)